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BROWNIAN DYNAMICS SIMULATIONS 
OF AGGREGATION AND GEL FORMATION 

IN LENNARD-JONES FLUIDS 

J. F. M. LODGE and D. M. HEYES 

Department of Chemistry, University of Surrey, Guildford, GU2 5 X H  

We report structural, thermodynamic and rheological properties of a three dimensional Lennard-Jones 
fluid as it is quenched, at various densities, from abovc the critical temperature into the two phase 
gas-liquid coexistence region. The structural and dynamical behaviour observed has many similarities 
with a sol-gel transition. There is a growth in cluster size for the spherical particles, evident also in 
growing peak heights in the radial distribution function, with the formation of a percolating network at 
low temperature ( T -  0.2-0.3) and at suRiciently high volume fractions ( > 0.1). This change is also 
marked by diverging structural relaxation times, manifest in an increasing viscosity and decreasing 
self-diffusion coelficient during the quench. The shear stress time correlation functions exhibit stretched 
exponential behaviour at long time. In fact, limiting long time relaxation is dominated by a single 
relaxation time, which is evident in excellent Maxwell-like viscoelastic behaviour in the low frequency 
region of the dynamic moduli. 

KEY WORDS: Sol-gel transition. 3D Lennard-Jones, spinodal decomposition, Brownian dynamics, 
computer simulation. 

1 INTRODUCTION 

Aggregation of colloidal particles has been the subject of many experimental and 
theoretical studies in recent years. The cluster that grow form a self-similar structure 
that was first noted by Vold’ and subsequently characterized in terms of the fractal 
dimension, D,. The mechanism of growth determines the fractal dimension of the 
clusters, as has been elegantly shown using lattice computer simulation techniques2s3. 
The fractal dimension of clusters for gold, silica and polystyrene particles, has been 
found to be D, = 1.75 for fast aggregation and D ,  = 2.02-2.12 for slow aggregation4. 
At sufficiently large volume fraction, an infinitely spanning network or ‘gel’ forms 
from the clusters as they merge together to form a connected cluster of macroscopic 
dimension (this is known as the sol-gel transition-sol referring to a state with finite 
sized clusters). These so-called ‘particle’ gels (as distinct from polymer gels) form a 
useful model for a range of soft solid-like foods including yoghurt and cheese. 

The gel point, GP, is a second order transition in connectivity, which is character- 
ised by a divergence in the viscosity beneath the G P  and a growth of the elastic 
modulus, G above the gel point. Near the sol-gel transition, gelling systems exhibit a 
slowing down in structural relaxation as a result of the divergence in average cluster 
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210 J. F. M. LODGE AND D. M. HEYES 

size. For example, for the viscoelastic behaviour, as the gel point is approached, 
correlation functions become more nonexponential, reflecting an increasingly broad 
range of relaxation times. The correlation function has been found to be initially a 
power law decay, - r-‘, terminating in a stretched exponential, - exp( - t / z ) -”) ,  
with /j - D,/(DJ + l)”.hs7-9-’2 . Before the gel point the stress correlation function is 
truncated by a stretched exponential, beyond a certain (divergent) time. At the gel 
point, the decay is power I ~ W ~ , ~ .  The viscoelastic behaviour of physical (‘entangle- 
ment’) and chemical (e.g., silica) gelling systems near the sol-gel transition manifest a 
power law decay with time of the stress relaxation function and the dynamic moduli, 
C’(to), G”(oj) cc 0A13.9.10. A consequence of this scaling is that tan (6) = G“/G‘ is 
independent of frequency, which has been convincingly demonstrated in a number 
of recent experimental studies on crosslinking This behaviour has how- 
ever still to be observed for the particle gels. Well above GP, for particle gels, the 
elastic modulus increases as dy,  where 4 is the solids volume fraction, where y lies in 
the range 3.7-4.5 from different s t ~ d i e s ’ ~ ~ ’ ~ .  

Recent studies of polymer induced flocculation by the depletion mechanism and 
gelation of monodisperse spherical colloidal particles located the gel state in the 
two-phase coexistence regionI6*l ’. As the system is ‘quenched’ into the two phase 
region (by adding free non- adsorbing polymer) a gel state can be formed. There still 
remain unresolved fundamental issues relating to gel formation in attractive particle 
systems. For example the effect of particle concentration and strength of attraction 
between the particles on the level and nature of clustering, and the effects these have 
on the dynamic rheology of these systems around the gel point. Further work is 
required to establish the relationship between the equilibrium phase diagram and 
viscoelastic behaviour. The purpose of the present study is to a) explore if it is 
possible to model the process of gel formation by Brownian dynamics and b) to 
attempt to resolve some of the above issues using this method. A 3D Lennard-Jones 
model is employed, because its phase diagram is now known very well, and its form 
is not unrealistic for some colloidal systems. 

The LJ phase diagram is given in Figure l), based on recent co-existence datal8*l9. 
The curves delimit various regions in the T vs. p plane. Outside the gas-liquid 
coexistence line, either the gas, liquid or fluid phases are stable. However, inside the 
gas-liquid coexistence line a single phase gas or liquid is not at thermodynamic 
equilibrium. The gas and liquid phases co-exist. Approaching from left to right on 
the figure, in the metastable region growth of the liquid phase proceeds by nu- 
cleation (‘germination’) and accretion of the gas molecules onto the surface of the 
clusters. In the unstable region, density fluctuations on all wavelengths are facile, 
and the development of two phases takes place by a process known as ‘spinodal 
decomposition’. The spinodal line shown on the figure was estimated from the locus 
of (dP/dp),=O in the two phase region, using a recent Lennard-Jones par- 
ameterised equation of state2’. Simulation studies of 2D Lennard-Jones fluids have 
been carried out and demonstrated this growth mechanism21,22 for a single compo- 
nent fluid and also for a 2D binary An earlier study of spinodal decomposi- 
tion in 3D LJ single component fluids is given in Ref. [24]. 

The spinodal region is something of a transient curiosity in molecular fluids, as the 
time scales are rather short (T - 10-9S). However, in colloidal systems, the relaxation 
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Figure 1 The Lennard-Jones phase diagram 

times scale as the cube of the particle diameter and the solvent viscosity, so that this 
transient process is long and is significant on human time-scales. The relaxation times 
can be years, so that the early stages of the spinodal process in these systems, where 
there is still a percolating network, called a gel, is of considerable practical importance 
not least in the area of consumer health-care and cosmetic products. 

2 COMPUTATIONAL DETAILS 

We consider a cubic simulation cell containing N LJ model molecules. The volume 
fraction, 6 = TI N o 3 / K  where V is the volume of the simulation cell, is I/: The volume 
fractions chosen for our simulations are 6 = 0.030, 0.100, 0.150, 0.300, 0.31416, 0.455 
and 0.500. In  each case an equilibrated system above the critical temperature, was 
quenched in stages down in temperature well into the two phase region. Recent 
critical point values for the truncated LJ molecule are, = 1.321 f0.004 and 
p ,  = 0.306 ? 0.001 [IS]. Calculated properties are quoted in particle based reduced 
units, cg., CT for length, E for energy, and o(m/c)”* for time, where m is the mass of 
the model colloid particle. The Brownian Dynamics simulation technique is the 
same as we have used in previous studies (e.g.,27). 

The Lennard-Jones potential is used to represent the interaction between model 
colloidal particles in the simulation, 
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212 J. F. M.  LODGE A N D  D. M. HEYES 

substituted in the Zwanzig-Mountain formula for the shear rigidity modulus at 
infinite frequency, G ,  [25]  gives 

where ( u l z )  and ( u 6 )  are the average r -  and r-(' interaction energy per particle. 
In the case of the colloidal systems G, was computed during the simulation as a 
time average. 

The stress tensor, cr, is in terms of the microscopic details, 

We also compute the shear-stress time autocorrelation function, C,(t), 

where ( ...) indicates an average over time origins in Eqn. (4). This is the same as a 
shear stress relaxation function, as would be measured in a step-in-strain experiment 
in the limit of zero strain. A useful relationship (and consistency check in the 
simulation) is 

G, = C,(r = 0). ( 5 )  

The interaction part of the shear viscosity is given by, 

The viscosity is conveniently normalised by the solvent viscosity, qs. 
The time correlation function can also be used to calculate the linear viscoelastic- 

ity of the colloidal liquid by Fourier transformation. The complex shear modulus is, 

G*(w) = G'(w) + iG"(o), (7) 

where G'(w) is the storage modulus and G"(w) is the loss modulus. In terms of the 
stress time-correlation function we have. 

G*(o)  = i C,(t) exp( - icut)todt. 1: 
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BROWNIAN DYNAMICS SIMULATION 213 

The Maxwell model for a classical viscoelastic fluid, characterised by a single shear 
stress relaxation time, z, gives for the time-correlation function, c,s(t) = G, exp ( - t / z )  
where the relaxation time is given by z = q o / G , ,  

and 

The storage modulus increases monotonically with w z  and the loss modulus first 
increases as oz increases from 0, then maximises and equals the storage modulus at 
oz= 1. 

It is convenient to render the colloid liquid's viscosity in dimensionless units, by 
dividing them through by the host liquid's viscosity, to form the relative viscosity, 
qr0 = qo/qF and q,, = q ,  /q,. The complex dynamic viscosity, 

q*(w) = q'(w) + iq"((O) (11) 

is related to the dynamic shear modulus, G*(w) through G*(o)  = wq*(w). We have, 

I f *  I 

and 

where $(a) = '1, which is hydrodynamic in origin. 

tion, generalising the treatment ofzh 
The self-diffusion coefficients were obtained from the force auto-correlation func- 

t rt 

The calculations are conveniently carried out in reduced units appropriate to both 
the interaction potential and the solvent. The system of units used for computation 
and presentation of data is discussed in Appendix A. 
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214 J. F. M. LODGE AND D. M .  HEYES 

3 RESULTS AND DISCUSSION 

As temperature decreases into the two phase region, there is evident a pronounced 
change in the local structure. This can be seen in the pair radial distribution func- 
tion, g(r) ,  which shows a dramatic growth in the height of the first peak, which is 
evidence of a condensation of the particles into clusters. These clusters grow as 
temperature decreases, manifest in additonal peaks at (5,2a.. . for the very lowest 
temperatures considered ( T <  0.5). Figure 2 presents radial distribution functions for 
a series of quenches at volume fractions ranging from 0.03 to 0.5. For example, 
Figure 2(a) gives the g ( r )  for 4 = 0.03 and 4 = 0.314 states at several temperatures. 
Long-range order grows to about 30, but further growth is restricted by the low 
density of particles. However, at 4 = 0.15, shown in Figure 2(b), much longer range 
structures are evident at T <  0.3, indicative of a gel-like state. It is therefore probable 
that, with a given range of attractive interaction, there is a minimum density of 
particles required to form a gel. It is interesting that there is a peak in the radial 
distribution function at r - 1.7, which suggests some local crystalline structure. This 
is not surprising, as at these low temperatures we are in the gas-solid coexistence part of 
the phase diagram. This feature is present at 4 = 0.314 (Fig. 2(c)) and also at $ = 0.500 
(Fig. 2(d)), the latter state is in the liquid-solid region of the Lennard-Jones phase 
diagram, and therefore the supercooled states are best referred to as glasses3'. 

A typical configuration at T= 0.5 and 4 = 0.1 in Figure 3 gives some evidence of 
clustering in the two-phase regime. Visual evidence for the gel-structure was rather 
disappointing. The human eye appears not to be very effective at noticing long- 
range order in randomly arranged systems. The long range structuring probably 
takes the form of evolving transient structures (note that there are not chemical 
bonds between the particles) which can only be identified using a time-average 
property, such as the radial distribution function. Another such function is the 
average cluster size (using the definition that a single particle is in a cluster if i t  is 
less than 1.840 from at least one particle already in the cluster) which also shows 
clearly the growth of co-existing low and high density phases. The interaction dis- 
tance used to define the cluster is where the interaction potential has the 
value-0.1 e at a separation greater than the minimum in the pair potential. Figure4 
shows the average cluster size (i,e., number of particles in a typical cluster) as a 
function of temperature for a 4 = 0.03 state. This quantity increases dramatically for 
T <  1 .O. Another time-average property that reflects this process of phase separation 
is the average interaction energy per particle, u, computed from 

1 N - l  N 

Figure 5 shows u ( T )  for a series of volume fractions. u decreases with temperature, 
reflecting the increased level of association that takes place in this part of the phase 
diagram. There is qualitative difference in the behaviour of the systems in the gel 
regime ($ = 0.03 -0.3) and those in the glassy regime (4 = 0.455 -0.5). The rate of 
descent is much more gradual on the glassy part of the phase diagram. Excluded 
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0 0.5 1 1.5 2 2.5 

d T 

Figure 2 
and N = 108, (b) 4 = 0.15 and N = 256, (c) d, = 0.314 and N = 256, and (d) 4) = 0.500 and N = 108. 

Radial distribution functions as a function of temperature given on the figures for: (a) Cp = 0.03 

X 

Figure 3 
N = 108 simulation, 

Snapshot configuration in perspective of the LJ particles takcn from a Cp = 0.10, T =  0.5 and 

volume effects prohibit major structural changes, so there is a limit to the extent that 
the internal energy can change. However, in the lower density gel regime, structural 
changes can be much more dramatic owing to the greater free volume. Therefore the 
transition apparent in u is much sharper than at higher volume fractions, particular- 
l y  at 4 = 0.1, which is clearly close to being an optimum density for gel formation 
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

T 

Figure 4 Average cluster size for a 4 = 0 03 and N = 108 simulation. The search diameter was r ,  = 1.84. 
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Figure 5 Average interaction energy per particle as a function of ternperaturc for a series of volume 
fractions, given on the figure ( N  = 108). 

with this pair potential. There is a sharp drop in u commencing at T -  1 as greater 
morphological changes are possible in this part of the phase diagram. The ther- 
modynamic changes associated with this kinetic transition are much more pro- 
nounced that in the glassy region. 

The two-phase part of the phase diagram is also characterised by a slowing down 
in the dynamical behaviour of the molecules. The time dependent diffusion 
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coefficients, calculated from Eqn. (14) plotted as D ( l ) / D & T )  are shown in Figure 6 
for 4 = 0.1 5 and 4 = 0.314. Note that the self-diffusion coeffcients are normalised by 
the temperature dependent self-diffusion coefficient at infinite dilution, Do( T) .  
Therefore we have scaled out the 'trivial' temperature dependent component of the 
self-diffusion coefficient arising from the variation in the mean square displacements 
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Figure 6 Time dependent, diffusion coefficients for (a) 9 = 0.15 and (b) Cp = 0.314 at temperatures given 
on the figure. 
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0.8 

of the particles. As temperature decreases, the long-time self-diffusion coefficients 
diminish to smaller values, even after scaling out the trivial temperature dependence. 
This is reasonable, as the LJ particles increasingly participate in larger agglomerates 
as temperature decreases and their mobility will be reduced as they take part in the 
dynamics of larger structural units. 

Self-diffusion, being a single particle property, can only give a relatively limited 
picture of the dynamics of the system. The shear stress autocorrelation function, 
C,(t), which is a collective dynamical property shows evidence of a slower decay with 
decreasing temperature. Figure 7 presents the C,(t) for the 4 = 0.15 and 4 = 0.314 
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Figure 7 Shear stress time correlation functions f o r  ( a )  
on the figure. 
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states. There is a gradual transition for the (b = 0.15 states, with the decay of the 
correlation function slowing down as temperature decreases. At $ = 0.314 there is a 
sharp transition at T = 0.3, at which point the correlation function decays very 
slowly (it still has a value of only 0.5 even for the relatively long time 
f = 20d/D,(T = 1). The long-time self-diffusion coefficient is essentially zero for this 
state (consult Fig. 6(b)) and therefore we can assume that this state is structurally 
and kinetically arrested, and has probably gone past the gel-transition to form a 
highly interconnected network. The gel transition is sharper in the stress correlation 
function that in D(t) ,  which shows a more gradual evolution through these state. 
There is a major change in C',(t) going from T=0.6 to T=0.3,  which is not mir- 
rored to the same extent in D(t) .  

Table 1 presents the thermodynamic quantities and shear rigidity moduli, com- 
puted using Eqn. (2) and Eqn. ( 5 ) ,  for the (b =0.150 and 0.314 systems. The two 
methods for G ,  agree within statistics for all states apart from (b = 0.3142 and 
T = 0.3, which we have already identified as being well within the gel region. The 
difference in the two ways of computing G,  reflects the non-ergodic nature of this 
supercooled state. Table 2 gives the corresponding shear viscosities from Eqn. (6) 
and self-diffusion coefficients calculated using Eqn. (14). The viscosities increase with 
decreasing temperature, whereas the self-diffusion coefficients diminish with decreas- 
ing temperature. The product of the two, also shown in Table2, indicates that the 
relative change in viscosity is greater than that of the self-diffusion coefficient. This is 
reasonable, as one would expect collective properties to reflect to a greater extent 
the growth in long range connectivity associated with the sol-gel transition. Self- 
diffusion can still take place to some extent within the percolating framework, 
especially as these networks are probably evolving in local detail over time, even 
though the network itself persists over long rheological times. 

The temperature dependence of the shear viscosity (Fig. 8) and the shear stress 
relaxation time, z = q o / G ,  (Fig. 9) show a dramatic increase as temperature 
decreases. The temperature at which this occurs depends strongly on volume; it 

Table I Summary of data from the quenched states. Key: 6, 
volume fraction; p ,  number density: T, reduced temperature; u, 
average interaction energy per particle; P, interaction part of 
the pressure; G':, infinite frequency shear rigidity modulus from 
Eqn. (2); G,., infinite frequency shear rigidity modulus from 
Eqn. (5). 

6 P T U P G: G, 

0.150 
0.150 
0. I50 
0. I50 
0.150 
0.31416 
0.31416 
0.31416 
0.3 1416 
0.31416 
0.31416 

0.286 
0.286 
0.286 
0.286 
0.286 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

0.2 -5.76 
0.4 -5.06 
0.7 -3.67 
1.0 -2.41 
1.5 - 1.96 
0.3 -6.28 
0.6 -5.03 
0.9 -4.28 
1.2 -4.10 
1.5 -3.96 
2.0 -3.75 

- 0.265 
- 0.297 
-0.336 
-0.316 
-0.212 
- 1.20 
- 1.15 
- 1.04 
-0.58 
-0.14 

0.55 

7.12 
6.06 
4.04 
2.36 
2.06 

14.46 
1 1.06 
9.21 

10.06 
10.96 
12.44 

7.14 
6.14 
4.08 
2.37 
2.10 

28.5 
11.2 

10.1 
11.0 
12.4 

9.23 
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Table 2 As for Table I .  except Key: g,,, percolation threshold search diameter; ql,/q,5. LJ 
interaction part relative shear viscosity taken from Eq. (6): D(T)/D, , (  T ) ,  the reduced 
long-lime self-dilTusion coeficient, D(r --t x’) from Eqn. (14). 

0.150 
0.150 
0.150 
0.150 
0.150 
0.31416 
0.3 141 6 
0.3 I416 
0.31416 
0.3 141 6 
0.31416 

0.286 
0.286 
0.286 
0.286 
0.286 
0.600 
0.600 
0.600 
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Figure 8 Temperature dependence of the reduced viscosity for a series o f  volume fractions given on the 
figure. All simulations were for N = 108 except (t, = 0.150 and 4 = 0.3 14, which were carried out using 
N = 256. 

increases with volume fraction. For 4 = 0.15 for example, this occurs at T-0.5 
whereas for 4 = 0.455, the temperature at which divergence starts in T =  - 0.9. 

As discussed in the Introduction, the analytic form adopted by the shear stress 
correlation function is a signature of the onset of gelation that is used in experimen- 
tal studies (recast as its Fourier transform, G’(ru), G”(w) K to^). With this in mind, we 
now consider the analytic forms of our computed time correlation functions. In our 
previous simulations on model stabilised colloidal liquids, using the same algorithm, 
we found that the computed C,(t) can be represented very well by a so-called 
‘fractional’ or ‘stretched’ exponential (except at very short times where this analytic 
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Figure 9 As for Figure 8, except the shear stress relaxation times, 5, are shown. 

form underestimates the simulation C,(t))”. The stretched exponential has the 
analytic form 

(16) 

where z’ and are adjustable parameters. A graphical manipulation of the com- 
puted normalised (i.e., CJO) = 1) functions is an alternative method for determining 
the analytic form of the computed BD C,(t), which has the advantage that adherence 
to a particular form in only part of the time domain can be readily seen. (The 
procedure has been suggested previously, e.g.,28.) For an exponential decay 
C J t )  = exp( - t / z ) ,  for example, we have that In(C,,,(r)) is linear with slope - z -  ’ 
when plotted against t .  For a stretched exponential In ( - ln(Csn(r))) has a slope of /3 
and an intercept of - flln (z’). An algebraic decay C,v,(t) = A t - “  when plotted as 
ln(C,,(t)) vs. ln(t) has a slope of-a. Therefore a graphical representation of these 
computed functions should indicate clearly which of these analytic forms (if any) the 
data conforms to and in what time regions. Treatment of the computed data re- 
vealed that, as for the model stabilised systems, overall the stretched exponential is 
the analytic form that best describes the data at long time, although this form is not 
suitable as t-0. Figure 10, for example, shows a In( -In(C,,(t)))vs. In(t) plot for 
N = 108 and 4 = 0.3 systems at a range of temperatures above and in the two-phase 
region. There is a linear regime at long times for all of the states. 

Figure 11 reveals that there is some evidence that the algebraic form is starting to 
appear in a supercooled state T = 0.2, as there is a linear regime In (CJt)) vs. In ( t ) .  
The slope - a = - 1.0, a little high on the basis of the above fractal dimension 
criterion. However, at this stage we cannot confirm the generality of this behaviour, 
as with the current stage-by-stage quench procedure i t  is difficult to locate the gel 
point itself, and (only at the gel point is algebraic decay thought to dominate). 

c,(t) = G,,,exp( - t /z ’ )@),  
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Figure 10 log( - C&,Jt)))vs. log([) for = 0.3 and N = 108 at temperatures given on the figure. 
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Figure 11 A plot of log(C,,Jr)) vs. log(t) for the 4 = 0. I5  and N = 108 systems 

The storage and loss moduli reveal near-Maxwellian limiting behaviour a t  low 
frequency, as illustrated in Figures 12 and  13. The low frequency dynamic moduli at  
frequencies below toa2/D,(1) - 5 can be represented by a single relaxation time 
Maxwell element. This gives additional support to the conclusion made above, that 
the stress time correlation function is close to being a stretched exponential at  long 
times. Any stretched exponential can be written as a weighted sum of exponentials 
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Figure 13 The G" for 4 =0.314 and N = 256 states at temperatures given on the figure 

with different relaxation times. It would appear that at  long times only one of these 
'Maxwell elements' survives and  therefore a single relaxation time, the so-called 
'longest relaxation time', zl, dominates the evolution of the system on  these time 
scales33. This occurrence of a characteristic time at  long times is widespread in 
polymer and colloidal systems. This relaxation time can be computed as a function 
of frequency from zl((o) = G'/wC", on assuming Maxwell behaviour to hold a t  each 
frequency. Figure 14 shows z , (o ,T )  for the (b = 0.314 states, and reveals that i t  
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reaches a constant value, somewhere between a value of 1 - 10a2D, ' ( I ) ,  depending 
on temperature. The longest relaxation time, T ~ ,  is observed to increase with dimin- 
ishing temperature in a similar manner as the mean relaxation times (see Fig. 15), 
defined earlier from the viscosity, T,. The values of T ]  are typically an order of 

Figure IS The longest relaxation t i m e  I ,  it$ ii f t i r ic t ion of tcinpcraturc l o r  the volume fractions indicated 
on the  ligllrc. N = l o x .  
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magnitude larger than the z, at the same state point. This is because z, is a mean of all 
the component relaxation times in the system and therefore z, includes the shorter 
relaxation times as well as r1; all show evidence of increasing as temperature 
decreases. 

The frequency dependent absolute complex viscosity, shown in Figure 16, gives 
another perspective on the critical slowing down of the dynamics through the quench. 
As expected, the greatest relative change with temperature is at low frequencies, as the 
modes of the network are most different from an unassociated fluid at low frequency. 
Figures 17 and 18 give the q"(w) for 4 = 0.33 and 0.5, which manifest similar trends. 

b = 0.15 
1 :  

p 0.1 : 

3 
FL- - 0.01 7 I 

0.001 r 

0.0001 ' ' . '  ' ' ' ' ' ' ' ' ' ' ' ' , '  ' ' . I  

10 , '  "I ' "I ' " I  ' , . I  , . . I  , , . I ,  1 . I  1 , . .  
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Figure 16 Complex viscosity for the states given on the figure. N = 256. 
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Figure 17 $(w) for (1, = 0.03 states at a series of temperatures. N = 108 
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0 2 4 6 8 10 12 14 16 18 20 

Figure 18 As for F. igure 17, except (/J = 0 5 

Another perspective on these supercooled states is revealed in the structure factor, 
S(k), which is obtained from the Fourier transform of the radial distribution function”. 
In Figure 19 are given S ( k )  at different temperatures during the quench at 4 = 0.314. 
It is notable that S ( k )  for k + O  diverges as temperature decreases, indicating an 
infinite compressibility [34], which is expected for a weak network. The enhanced 
tendency for network formation at low temperature, is also reflected in the per- 
colation behaviour. We have computed the ‘search diameter’, gs, at which 50% of 
the computed configurations form percolating clusters, the so-called percolation 

14 I I 

T=2.0 ~ 

T=0.3 . . . . . . 

-2 ’ 
0 2 4 6 8 10 12 14 16 18 20 

k 

Figure 19 Structure litctor for (i, : 0.314 \tntes a t  dilierent tcmpcratures and for N = 256 
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thereshold [35]. A particle is defined to belong to a cluster if its centre is within a 
distance of (T\ from the centre of at least one other particle already in the cluster. 
Table 2 shows that this distance decreases as temperature decreases, indicating that 
the system is becoming more ‘connected’. A t  some large value of (T, any system will 
percolate. The significance of a small value for (T, is that  the long-range structure in 
the system IS facilitating network formation, so (T, does not need to be so large. 

4 CONCLUSIONS 

We have used Brownian Dynamics to form a model particle gel by quenching a 
supercritical Lennard-Jones fluid in three dimensions well into the spinodal region 
of the phase diagram. At sufficiently low temperature ( - 0.3) a network does form 
which has a limiting diverging viscosity and zero self-diffusion coefficient and 
structural features associated with a classical gel. An optimum gel-like state would 
appear to form at a reduced number density of-0.2, as this forms the sharpest 
transition, especially in thermodynamic properties. Also there is a critical number 
density of particles required to form a gel. For too many particles, the properties 
tend to show more gradual changes on cooling, more akin to a glass. 

One of the main deficiencies in the current model is that, by having such large 
steps in the quench procedure we were unable to locate the gel point itself. This was 
reflected in our time correlation functions exhibiting stretched exponential, rather 
than algebraic decay with time, which is expected only at the gel point. Nevertheless, 
we have identified many of the features of classical sol-gel behaviour even with a 
simple Lennard-Jones model, auguring well for future studies of gels by Brownian 
Dynamics simulations. 
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APPENDIX A 

The program units (denoted by*) for length (L) ,  mass ( M )  and energy ( E )  are 
L* = L/a, M *  = M / m  and E* = E / E  where a and t: are defined in the pair potential of 
Eqn. (1). Mass, m is the mass of the colloidal particle. The mass of the colloidal 
particle plays no role in the dynamics of large colloidal particles, the so-called 
‘creeping flow’ limit. Nevertheless it is still a useful internal unit  or intermediate unit 
within the BD program. 

The scaling behaviour of suspension rheology has been a subject of considerable 
interest [3 I ]  [32]. Dispersion rheology for suspended particles of arbitrary diameter 
and solvent viscosity can be reduced in the low Reynolds number limit (i.e., where 
suspended particle inertia can be ignored) as follows. The shear rate, $, scales as the 
Peclet number, P ,  = $T where T = LI’/D,,, for a spherical particle of radius, LL Do is the 
self-diffusion coefficient of the particle at infinite dilution. 7 is the natural uni t  of 
time, a s  i t  has the size and solvent dependence of structural relaxation behaviour 
included in its definition. The infinite dilution value for the self-diffusion coefficient, 
D,(T) = k,T/[, and the friction coefficient, To = 3naq, where q,  is the viscosity of the 
solvent. This scaling behaviour enables the computations to be carried out without 
specifying an explicit a or q,,. 

In program units, <,* = 3ncr*17,* = 3n1f, as cr* = 1 .  I t  is convenient to arrange that 
[X = 1, which forces the definition, 11,; = 1/3n. Therefore in the computer program, 
the solvent viscosity has  the numerical value of 1/3n. 

The infinite dilution value for the self-diffusion coefficient, D,*(T) = k,T/<,* and in 
program units, DX(T) = k,T/[,* = T*. Therefore, D,T(T* = 1 )  = OX( 1) = 1. From this 
the reference reduced relaxation time can be defined as T =crz/D,(l) .  We have 
T* = c ~ * ~ / D , * (  1 )  = 114. The particle-based uni t  for time is c r ( m / ~ ) ’ ! ~  and therefore 
7 = 4 -  * a ( n i / ~ ) ” ~ .  An alternative reduced time and self-diffusion coefficient would be 
to scale out the temperature a s  well, i.e., T*( T )  = ~ i * l / D ; (  T* )  = T*/4. We use both 
definitions. The former definition is temperature independent, whereas the latter 
scales out the ‘trivial’ temperature dependence of a property that arises by virtue of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



230 J.  F. M. LODGE AND D. M. HEYES 

the change in mobility of the individual particles. (Note that in the model, the mean 
square displacement in a time step from the Brownian motion component of the 
dynamics, ( Ar2(At)) = 6D,At.) Generally, it is not meaningful to use t*(T) for unit 
of time, especially if states at different temperature are being considered, as in the 
present study. It is better to use z = n 2 / D o ( l )  as the unit of time. However, 
D(t ) /D ,* (  r )  is a sensible reduction of the time dependent self-diffusion coefficients, as 
discussed in the main text. 
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